On the inhomogeneous biharmonic nonlinear Schrödinger equation: Local, global and stability results
نویسندگان
چکیده
منابع مشابه
global results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
Singular Solutions of the Biharmonic Nonlinear Schrödinger Equation
We consider singular solutions of the L 2-critical biharmonic nonlinear Schrödinger equation. We prove that the blowup rate is bounded by a quartic-root, the solution approaches a quasi–self-similar profile, and a finite amount of L 2-norm, which is no less than the critical power, concentrates into the singularity. We also prove the existence of a ground-state solution. We use asymptotic analy...
متن کاملNonlinear Schrödinger equation on graphs: recent results and open problems.
In this paper, an introduction to the new subject of nonlinear dispersive Hamiltonian equations on graphs is given. The focus is on recently established properties of solutions in the case of the nonlinear Schrödinger (NLS) equation. Special consideration is given to the existence and behaviour of solitary solutions. Two subjects are discussed in some detail concerning the NLS equation on a sta...
متن کاملThe Nonlinear Schrödinger Equation on the Interval
Let q(x, t) satisfy the Dirichlet initial-boundary value problem for the nonlinear Schrödinger equation on the finite interval, 0 < x < L, with q 0 (x) = q(x, 0), g 0 (t) = q(0, t), f 0 (t) = q(L, t). Let g 1 (t) and f 1 (t) denote the unknown boundary values q x (0, t) and q x (L, t), respectively. We first show that these unknown functions can be expressed in terms of the given initial and bo...
متن کاملInverse Problem for an Inhomogeneous Schrödinger Equation * †
Let (− k 2)u = −u + q(x)u − k 2 u = δ(x), x ∈ R, ∂u ∂|x| − iku → 0, |x| → ∞. Assume that the potential q(x) is real-valued and compactly supported: q(x) = q(x), q(x) = 0 for |x| ≥ 1, 1 −1 |q|dx < ∞, and that q(x) produces no bound states. Let u(−1, k) and u(1, k) ∀k > 0 be the data. Theorem.Under the above assumptions these data determine q(x) uniquely.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nonlinear Analysis: Real World Applications
سال: 2020
ISSN: 1468-1218
DOI: 10.1016/j.nonrwa.2020.103174